Wastewater Treatment Plant

Nablus West

Annual Operation Report - 2015

Prepared by

Eng. Suleiman Abu Ghosh

Eng. Yousef Abu Jaffal

Eng. Mohammad Homeidan

Mr. Sameh Bitar

February 2016
TABLE OF CONTENTS

1. INTRODUCTION ... 5
2. BACKGROUND ... 7
 2.1 Location of the WWTP Nablus West .. 7
 2.2 WWTP Nablus West ... 9
3. GENERAL PERFORMANCE .. 10
4. OPERATION OF WASTEWATER TREATMENT PLANT FACILITIES 10
 4.1 Screens and grit/grease removal ... 10
 4.2 Two primary sedimentation tanks with total volume (1,728 m3) 10
 4.3 Two aeration tanks with total volume (18,000 m3) .. 10
 4.4 Nitrification and de-nitrification .. 11
 4.5 Two Final sedimentation tanks with total volume (7,718 m3) 11
5. OPERATION OF SLUDGE FACILITIES .. 12
 5.1 Two mechanical sludge thickening machines .. 12
 5.2 Primary thickener tank (548 m3) ... 12
 5.3 Anaerobic digester (3650 m3) ... 12
 5.4 Gas balloon holder (660 m3) ... 12
 5.5 Gas flare .. 12
 5.6 Sludge drying beds ... 12
 5.7 Two mechanical dewatering machines .. 13
 5.8 Other facilities .. 13
6. SCADA SYSTEM ... 13
7. PERFORMANCE OF WWTP ... 14
 7.1 Influent flow .. 14
 7.2 Cleaning performance ... 16
 7.3 Power consumption ... 17
 7.4 Gas production .. 18
8. PREVENTIVE MAINTENANCE .. 19
9. STAFF TRAINING AND ORGANIZATION STRUCTURE 19
10. Annexes ... 21
 Annex 1: Daily pattern readings of daily inlet flow ... 21
Annex 2: Graphs ..22
Graph 1: Average wastewater influent..22
Graph 2: The average treated effluent ...22
Graph 3: Daily dissolved oxygen concentration pattern in the aeration tank no. (1).......23
Graph 5: The COD concentration in the influent of WWTP ...24
Graph 6: The COD concentration in the effluent of the treated waste water24
Graph 7: The BOD₅ concentration in the effluent of the treated wastewater25
Graph 8: TSS concentration of the treated wastewater (TSS)25
Graph 9: The correlation between COD_out and BOD_out ...26
Graph 10: The average produced quantities of biogas ..26
Graph 11: Average pH measurements of the inlet wastewater27
Graph 12: Mixed liquor concentration (MLSS) in aeration tanks27
Graph 13: Average monthly treated wastewater and power consumption28
Graph 14: Conductivity results in the inlet ...28
Graph 15: Total dissolved solids in the effluent ...29
Graph 16: Power requirement kWh/kg COD treated ..29
Graph 17: Power requirement kWh/m³ treated ...30
Annex 3: Summary performance ..31
Annex 4: Power consumption ...31
Annex 5: Additional lab results of TWW ..32
Annex 6: Third party analysis TWW 19-12-2015 ..33
Annex 7: Third party analysis TWW 13-10-2016 ..34
Annex 8: Third party sludge analysis ...35
List of Figures

Figure (1): Topographic map in the project area ... 7
Figure (2): Direction of slope .. 8
Figure (3): Overview of WWTP Nablus West from the top of the digester (photo) 8
Figure (4): WWTP Nablus West .. 9
Figure (5): Aeration tank with implemented de- nitrification zone 11
Figure (6): Dry solids content after mechanical dewatering .. 13
Figure (7): Hydrograph of the daily treated wastewater inflows 15
Figure (8): Influent and effluent concentration of COD .. 16
Figure (9): Suspended solids of the inlet and outlet of the treatment plant 17
Figure (10): Monthly values of power consumption per treated m³ wastewater 18
Figure (11) shows the daily gas production from the digester 18

General Photos .. 36

Abbreviations
µs/cm: Microseimens per centimeter

Al: Aluminum

AT: Aeration tank

B: Boron

BOD: Biological oxygen demand

Ca: Calcium

Cd: Cadmium

cfu: colony fecal unit

CH₄: Methane

CL: Chloride

Cn: Cyanide

Co: Carbon monoxide

°C: Celsius degree

CO₂: Carbon Dioxide

COD: Chemical oxygen demand

Cr: Chrome

Cu: Copper

DO: Dissolved oxygen

FC: Fecal coliform

Fe: Ferric

GIZ: Gesellschaft für Internationale Zusammenarbeit

Hg: Mercury

JV: Joint venture

KfW: German Reconstruction Bank

kg/d: Kilogram per day

Km: Kilometer

KPR: Kinetics- Passavant Reodiger

kWh: Kilowatt hour

Li/HEC: Consultant Lahmeyer and Hijjawi Engineering Center

m³: Cubic meter
MBAS: Methylene blue active substance
MCC: Motorized control centre
Mg: Magnesium
MLSS: Mixed liquor concentration
Mn: Manganese
Na: Sodium
NH4-N: Ammonium as nitrogen
Ni: Nickel
NM: Nablus Municipality
NO3-N: Nitrate as nitrogen
Pb: Lead
PE: Population equivalent
PLC: Programmable Logic Controller
PO4-P: Phosphate as phosphorous
SAR: Sodium adsorption ratio
SCADA: Supervisory Control and Data Acquisition
Se: Selenium
SO4: Sulphate
TDS: Total dissolved solids
TN: Total nitrogen
TSS: Total suspended solids
TWW: Treated Waste Water
WSSD: Water supply and sanitation department
WWTP: wastewater treatment plant
Zn: Zinc

1. INTRODUCTION

Water Supply and Sanitation Department (WSSD) is considered one of the most important departments of Nablus Municipality (NM) that provides safe drinking water, and renders sanitation
services to Nablus citizens and a number of surrounding villages, in addition to four refugee camps, namely, Balata, Ein Beit Elma, New and Old Askar Camps. It is estimated that the total beneficiaries who receive drinking water services counts to 230,000. The department has a staff of 300 employees including engineers, technicians, skilled and unskilled laborers.

In 1998, the financial agreement for the implementation of Sewerage Project Nablus West was signed between the German Government through KfW and Nablus Municipality. So far, the allocated fund reached up to 39 million Euros. The Project entails construction of 12 km length trunk and interceptor, and wastewater treatment plant (WWTP) of 150,000 PE. The WWTP was designed to treat 14,000 m3/day and 8.0 tons of BOD$_5$ per day. The plant is located near Beit Leed village intersection. The wastewater is collected from Nablus West and from five villages namely; Zawata, Beit Eba, Beit Wazan, Deir Sharaf and Qusin in the future by gravity after the implementation of relevant sewerage networks.

Nablus West catchment area presently is currently inhibited by approximately 130,000 people. Presently about 95% of the entire population of Nablus west is connected to the sewerage network. The main objective of the sewerage project Nablus West is:

- Improve the environmental and health conditions in upper Wadi Zeimar

- Protect the surface and ground from pollution

- Reuse of treated wastewater for irrigation purposes

The construction works of the project have been completed in July 2013; however it was put into operation in November 2013. The consultant Lahmeyer and Hijjawi Engineering Center (Li/HEC) who provided the consultancy services for Nablus west sewerage project have issued the performance certificate to the contractor the JV of Kinetics- Passavant Reodiger (KPR) on September 23th, 2015.

Operational assistance for two years at the cost of 1.10 million Euros has been secured by KfW to provide operational assistance to operate, guide and train NM WWTP staff. The OA was provided by the KPR which was concluded in November 2015.

A second phase of OA financed through KfW is provided now by Consul Aqua to guide the WWTP staff on part time basis.
2. BACKGROUND

2.1 Location of the WWTP Nablus West

The WWTP Nablus West is located approx. 12 km to the west of Nablus City and lies on a much lower orthographical level than Nablus City. Ideally, wastewater is polluted with coarse materials that would flow into the treatment plant through gravity.

Figure (1): Topographic map in the project area
Figure (2): Direction of slope

Figure (3): Overview of WWTP Nablus West from the top of the digester (photo)
2.2 WWTP Nablus West

The WWTP Nablus West is in operation as an activated sludge process with a mechanical treatment, a biological treatment and a sludge treatment step with gas utilization. Figure (3) shows an overview of the WWTP Nablus West. Three construction stages have been planned for the WWTP Nablus West: stage 1 with a design horizon in 2020, stage 2 with design horizon in 2025 and a final stage 3 with a design horizon in 2035. During the first construction stage, only the colored parts in green and yellow of the WWTP (Figure 4) were constructed.

Figure (4): WWTP Nablus West
3. GENERAL PERFORMANCE

Around three millions nine hundred and sixty three thousands \((3,962,554 \text{ m}^3)\) cubic meters of wastewater were treated during 2015, with an electrical consumption of two millions six hundred sixty one thousands and seven hundred forty six \((2,661,746 \text{ kWh})\). In general, average of lab results showed that they were in line with the Palestinian Standards during the course of implementation during the last year. The average concentration of \(\text{BOD}_5\) was \(14 \text{ mg/l} \) and \(\text{TSS}\) was \(28 \text{ mg/l} \). By these results, the treatment efficiency in terms of \(\text{BOD}_5\) and \(\text{TSS}\) were 96% and 93% respectively.

4. OPERATION OF WASTEWATER TREATMENT PLANT FACILITIES

4.1 Screens and grit/grease removal

The wastewater treatment in Nablus west began with a screening unit. The screening unit consisted of two types of screens. The first was coarse screen (bar space of 5 cm), and the second was fine screen (bar space of 5 mm). The main objective of this unit was to protect the facilities from plastics, woods, rubbish and etc. The screened solid material removed by the screen conveyors for disposal.

Grit/grease removal unit was designed to remove sand and grits/grease from wastewater. The grease was sent to the anaerobic digester however, grits/sands were washed out by treated wastewater in the grit classifier to sanitary disposal.

4.2 Two primary sedimentation tanks with total volume \((1,728 \text{ m}^3)\)

In this unit, around 60% of organic suspended solids were settled down in two rectangular tanks forming primary sludge. The primary sludge was thickened in a gravity primary thickener to increase its concentration from 1% to 4% and to be digested in the anaerobic digester in a later stage.

4.3 Two aeration tanks with total volume \((18,000 \text{ m}^3)\)

The biological wastewater treatment in the aeration tanks was the core of the WWTP. High concentration of special aerobic bacteria and other microorganisms were activated in the aeration tanks at existence of high concentration of oxygen called activated sludge. The soluble and other suspended organic material were digested by bacteria. This unit has to be controlled in terms of the concentration of activated sludge and dissolved oxygen content. Almost 90% of the power consumption of the WWTP is required to operate these two tanks.
4.4 Nitrification and de-nitrification

The plant was designed for COD reduction. Nitrification and de-nitrification also phosphate elimination was not the aim of the first stage. However, on the 17th of March, 2015 the plant started to perform de-nitrification process in the biological treatment in addition to nitrification process.

The control and potential problems of this process were discussed to be sure how the process control will be optimized. Since then, the de-nitrification has been performed as an additionally treatment step in the aeration tanks.

Required conditions:

- presence of denitrifying bacteria for the process (exist in normal aerobic sludge)
- anoxic conditions (switch-off some aerators)
- enough detention time (reducing velocity, switch-off aerators)
- carbon Source (= H+-donator, wastewater, only one primary settling tank)
- appropriate pH and temperature (normally existing in domestic wastewater)

In areas where oxygen was reduced, there were bacteria starting a de-nitrification process. In de-nitrification, elemental gaseous nitrogen is produced from nitrate and nitrite and released to the atmosphere.

4.5 Two Final sedimentation tanks with total volume (7,718 m³)

The activated sludge was settled down in the two circular final sedimentation tanks. The settled bacteria was withdrawn from the bottom of the tanks and returned back to the aeration tanks as returned sludge. This
recycling of activated sludge was necessary to maintain certain concentration of activated sludge (around 2-3% SS) with optimal sludge age, however the excess sludge was pumped to the mechanical thickeners for further treatment in the anaerobic digester.

5. OPERATION OF SLUDGE FACILITIES

5.1 Two mechanical sludge thickening machines
The excess sludge was withdrawn via pumps to the mechanical thickening machines where polymer was added. This machine thickened the excess sludge up to 1% to 6% SS concentration. After thickening it was mixed with the primary thickened sludge to be pumped later on to the digester.

5.2 Primary thickener tank (548 m³)
The settled primary sludge in the primary sedimentation tanks was sent to the primary gravity thickener circular tank. In this unit, the sludge was thickened to reach 6% which was treated in the anaerobic digester.

5.3 Anaerobic digester (3650 m³)
The thickened primary sludge and thickened excess sludge were treated in the anaerobic digester; the retention time is 21 days. PH and temperature were carefully monitored to maintain optimum conditions for the anaerobic bacteria in the digester (pH= 6.8-7.5), the solid content was around 3-4 %. The biogas produced from the digester normally contained 33% of CO₂ and 66% of methane gas. The sludge was heated up via boiler to maintain mesophilic conditions in the digester around 36 °C.

5.4 Gas balloon holder (660 m³)
Produced CH₄ gas from the digester was treated in stone filters to remove the humidity and then store it in the gas holder.

5.5 Gas flare
The excess gas was burned by the gas flare. It started flaring when the storage in the balloon reaches up to 90% and stop when it reached 80% of the volume of gas balloon.

5.6 Sludge drying beds
In the summer time, the digested sludge was pumped to the drying beds for drying via natural evaporation. There were 11 beds with total area of 11.5 donums. After drying, the sludge was transported to the sludge storage yard for disposal into Zahret Al-Fenjan sanitary landfill site near Jenin.
5.7 Two mechanical dewatering machines

During winter and even in summer time dewatering machines were used to dewatering the digested sludge coming from the digester to have solids more than 25%. Special polymers were used to improve the efficiency of these machines as shown in Figure (6).

![Dry solids content after mechanical dewatering](image)

Figure (6): Dry solids content after mechanical dewatering.

5.8 Other facilities

Other equipment was available for the sustainability of the operation of the WWTP such as well-equipped lab, stand by generator, spare parts, administration building and workshop.

6. SCADA SYSTEM

The WWTP plant was controlled using Programmable Logic Controller (PLC) and Supervisory Control and Data Acquisition (SCADA). The PLC’s were located in several substations (electrical switch rooms) in the WWTP.

The WWTP was controlled by PLC’s. PLC’s and their support equipment computer controlled system that was capable of remote managing of the plant’s operation. The control was executed
from the analogous and digital inputs/ outputs received from instruments, drives and MCC and from signals received from the SCADA system.

7. PERFORMANCE OF WWTP

7.1 Influent flow

The performance of WWTP Nablus West during 2015 was analyzed on the basis of the plant loading which had been monitored regularly. Two biological treatment units were mainly in operation, the hydraulic treatment capacity of the plant was sufficient and the amount of inflow in most cases under design capacity. Only extreme weather conditions (heavy rain) led to capacity problems. In the following section, the hydraulic and pollutants loading and the actual performance of WWTP Nablus West from January 2015 to December 2015 were analyzed. The main problems that had been faced were also described. Finally, feasible threshold values for the WWTP effluent and sludge was determined and the tolerance capacity of the plant was reviewed.

Figure (7) shows the hydrographs of the daily wastewater flows which were treated in WWTP Nablus West. It becomes clear that (apart from singular flow peaks) no strong fluctuation of the daily wastewater flows occurred during summer time. However, in the winter time the inflow increased and the fluctuation was sometimes very high depending on heavy rain events. The capacity of the WWTP Nablus West was mainly adequate but sometimes the inlet main gates had to be throttled for plant protection. In such case, the bypass prior to the WWTP had to be used.

The average of daily wastewater flow in the year 2015 was approximately 11024 m3/d. In comparison, the total estimated wastewater flow including infiltration for the target amounted to approximately 14,860 m3/d (design). This shows that the actual treated average total daily wastewater flow did not come close to the designed flow. The amount for incoming wastewater will increase over the next years.

The average flow values in the year of 2015 were shown in Figure (7).
Figure (7): Hydrograph of the daily treated wastewater inflows

Additional villages are expected to be connected to the trunk line and/or interceptor in 2016.
7.2 Cleaning performance

The current daily wastewater pollution load being treated in WWTP Nablus West in terms of COD and SS was calculated by multiplying the daily wastewater flows by the respective concentrations of the pollutants. The average daily COD load was approximately 9470 kg/d and the total COD load over the year of 2015 was 3,456,550 kg. The COD load at the effluent in the same period was 277,639 kg. This means a cleaning performance of approximately 92%. As the treated daily wastewater flows came close to the estimated wastewater flow (in winter times) the very low daily pollution loads were apparently caused by a high rate of infiltration water (heavy rain falls). The measured COD values (inlet/outlet) and the cleaning performance are shown in Figure (8).

Figure (8): Influent and effluent concentration of COD

The hydraulic and pollutant load of WWTP Nablus West as well as site conditions had an effect on the performance of the WWTP. The average daily suspended solids inflow was approximately 4,123 kg/d. The reduction of suspended solids was in average approximately 93%. Figure (9) shows the suspended solid values for the WWTP Nablus West.
Figure (9): Suspended solids of the inlet and outlet of the treatment plant

7.3 Power consumption

Optimization of operation cost was one of the most important challenges in municipal WWTPs. The specific power consumption of similar WWTPs likely to be below 0.85 kWh per m³ of treated wastewater. Deviations from this value can be attributed to the circumstances of daily plant operation. For example, if the oxygen measurement is not clean and the measured value was much lower than the real situation of dissolved oxygen inside the aeration tank the power consumption would increase because of increased activity of the aerators. Economic benefits through optimal treatment contribute significantly to the reduction of energy consumption. Figure (10) shows the average power consumption (monthly) per treated m³ of wastewater.
7.4 Gas production

The gas production from the digester could be much more than the WWTP needs to cover the electricity demand. Part of produced gas at this stage was used for heating the digester. However, the excess biogas was burnt by the flare. The average gas production in the year of 2015 was 2,908 kg per day.
Figure (11) shows the daily gas production from the digester.

However, in the last three months of the year 2015 the gas production was increased within an average of 4500 kg per day. The reason behind this was more regular stable operations of the digester were established and due to the improvements of collecting pits procedures in the primary settling tanks and thus more fresh sludge was fed to the digester.

8. PREVENTIVE MAINTENANCE

From the beginning of the plant operations maintenance works and plans had been conducted in accordance with the periodic and routine works of machines manuals. These works could be classified as preventive maintenance and failure ones. Preventive maintenance was conducted under supervision of operational assistance provided by the main contractor and Consul Aqua since December 2015.

9. STAFF TRAINING AND ORGANIZATION STRUCTURE

Training was essential for the sustainability of the plant. The staff of Nablus plant had been trained by the main contractor in different fields of plant operations such as:

- Refreshing practical and theoretical off job training in Hamburg-Germany through GIZ.
- Practical and theoretical on the job training for all facilitates of WWTP for two years.
- Trouble shooting in emergency cases under normal operation conditions.
- Preventive maintenance.
Waste Water Treatment Plant Nablus- West
Organization Structure

Technical Adviser
Suleiman Abu Ghosh

Chief Operator
Yousef Abu Jaffal

Maintenance Engineer
NN

Process Engineer
Mohammad Humaidan

Lab Technician
Rola Salameh

WWTP Operator
Abed Al Hadi Norie
Rami Haziba
Khaled Makhzoom
Amjad Shanteer
Hassan Abu Settah

WWTP E &M Technician
Mohammad Abu Ayyash
Mohammad Tawashi
Mohammad Azzam

Guards
Rami Hasan
Zeidan Kayed
Zeiad Nasser
Hisham Mery

Kitchen
Mahmod Koea

Administrative Assistance
Sameh Al Bitar
10. Annexes

Annex 1: Daily pattern readings of daily inlet flow
Annex 2: Graphs

Graph 1: Average wastewater influent

Graph 2: The average treated effluent
Graph 3: Daily dissolved oxygen concentration pattern in the aeration tank no. (1)

Graph 4: Daily dissolved oxygen concentration pattern in tank no. (2)
Graph 5: The COD concentration in the influent of WWTP

Graph 6: The COD concentration in the effluent of the treated waste water
Graph 7: The BOD$_5$ concentration in the effluent of the treated wastewater

Graph 8: TSS concentration of the treated wastewater (TSS)
Graph 9: The correlation between COD_{out} and BOD_{out}

Graph 10: The average produced quantities of biogas
Graph 11: Average pH measurements of the inlet wastewater

Graph 12: Mixed liquor concentration (MLSS) in aeration tanks
Graph 13: Average monthly treated wastewater and power consumption

Graph 14: Conductivity results in the inlet
Graph 15: Total dissolved solids in the effluent

Graph 16: Power requirement kWh/kg COD treated
Graph 17: Power requirement kWh/m3 treated
Annex 3: Summary performance

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Design value 2020</th>
<th>Treatment efficiency %</th>
<th>Average 2015</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>Average inlet flow m³/d</td>
<td>14000</td>
<td>-----</td>
<td>11024</td>
<td>11556</td>
</tr>
<tr>
<td>Inlet COD mg/L</td>
<td>1100</td>
<td>-----</td>
<td>859</td>
<td>645</td>
</tr>
<tr>
<td>Outlet COD mg/L</td>
<td>100</td>
<td>92%</td>
<td>69</td>
<td>80.00</td>
</tr>
<tr>
<td>Outlet BOD₅ mg/L</td>
<td>20</td>
<td>96%</td>
<td>14</td>
<td>16.00</td>
</tr>
<tr>
<td>Inlet BOD₅ mg/L</td>
<td>550</td>
<td></td>
<td>430</td>
<td>323</td>
</tr>
<tr>
<td>Sludge age (days)</td>
<td>13.7</td>
<td>-----</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>MLSS g/L</td>
<td>3</td>
<td>-----</td>
<td>3.8</td>
<td>4.30</td>
</tr>
<tr>
<td>TSS_inlet mg/L</td>
<td>500</td>
<td></td>
<td>374</td>
<td>448</td>
</tr>
<tr>
<td>TSS_outlet mg/L</td>
<td>30</td>
<td>93%</td>
<td>28</td>
<td>32.00</td>
</tr>
<tr>
<td>(kWh/kg COD)</td>
<td>0.8</td>
<td>-----</td>
<td>0.85</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Annex 4: Power consumption

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Avg</th>
<th>Month/ 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jan</td>
</tr>
<tr>
<td>Treated wastewater m³</td>
<td>330,213</td>
<td>357,23</td>
</tr>
<tr>
<td>Power Consumption kWh</td>
<td>221,812</td>
<td>171,47</td>
</tr>
<tr>
<td>KWh/m³</td>
<td>0.67</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Annex 5: Additional lab results of TWW

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dec</td>
</tr>
<tr>
<td>COD out mg/l</td>
<td>Average</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>43</td>
</tr>
<tr>
<td>BOD out mg/l</td>
<td>Average</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>8</td>
</tr>
<tr>
<td>NH4-N out mg/l</td>
<td>Average</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>0</td>
</tr>
<tr>
<td>NO3-N out mg/l</td>
<td>Average</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>3</td>
</tr>
<tr>
<td>TN out mg/l</td>
<td>Average</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>6</td>
</tr>
<tr>
<td>PO4-P out mg/l</td>
<td>Average</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>3</td>
</tr>
<tr>
<td>TSS out mg/l</td>
<td>Average</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>8</td>
</tr>
<tr>
<td>MLSS mg/l</td>
<td>Average</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>3</td>
</tr>
</tbody>
</table>

*in May, the plant was out of operation for 4 days to make maintenance of the outlet weirs of the aeration tanks, * Nitrification and denitrification process start in June
1st Campaign: Quality of the treated wastewater in 19-12-2015 with comparison of reuse standard (34/2012)

<table>
<thead>
<tr>
<th>Maximum limits for chemical and biological properties</th>
<th>Comparison</th>
<th>Quality of Treated Water</th>
<th>Method of Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sampled</td>
<td>High Quality (A)</td>
<td>Good Quality (B)</td>
</tr>
<tr>
<td>(BOD5) mg/l</td>
<td>5</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>suspended solids (TSS) mg/l</td>
<td>18</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>FC (Colony/100ml)</td>
<td>22000</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>(COD) mg/l</td>
<td>52</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Dissolved Oxygen (DO) mg/l</td>
<td>6.2</td>
<td>>1</td>
<td>>1</td>
</tr>
<tr>
<td>dissolved Solids (TDS) mg/l</td>
<td>829</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>pH</td>
<td>8.22</td>
<td>6–9</td>
<td>6–9</td>
</tr>
<tr>
<td>Fat, Oil, & Grease mg/l</td>
<td><1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Phenol mg/l</td>
<td><0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>MBAS</td>
<td><0.01</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>NO3-N mg/l</td>
<td>8</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>NH4-N mg/l</td>
<td>3.9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total Nitrogen mg/l</td>
<td>12</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Cl mg/l</td>
<td>167</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>SO4 mg/l</td>
<td>47.4</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Na mg/l</td>
<td>138.2</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Mg mg/l</td>
<td>16.75</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Ca mg/l</td>
<td>52.5</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>SAR</td>
<td>3.0</td>
<td>5.85</td>
<td>5.85</td>
</tr>
<tr>
<td>PO4-P mg/l</td>
<td>5</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Al mg/l</td>
<td>0.107</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cu mg/l</td>
<td>0.032</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Fe mg/l</td>
<td>0.109</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mn mg/l</td>
<td>0.012</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ni mg/l</td>
<td>0.006</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Pb mg/l</td>
<td>Absent</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Se mg/l</td>
<td>Absent</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Cd mg/l</td>
<td>Absent</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Zn mg/l</td>
<td>0.116</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cn mg/l</td>
<td><0.03</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Cr mg/l</td>
<td>0.014</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Hg mg/l</td>
<td>1.3*10-4</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Co mg/l</td>
<td>Absent</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>B mg/l</td>
<td>0.137</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>E. coli (Colony/100ml)</td>
<td>2600</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Nematodes (eggs/L)</td>
<td>Absent</td>
<td>1=></td>
<td>1=></td>
</tr>
</tbody>
</table>

33
2nd Campaign: Quality of treated wastewater in 13-1-2016) with comparison of reuse standard (34/2012)

<table>
<thead>
<tr>
<th>Maximum limits for chemical and biological properties</th>
<th>Sampled 13/01/2016</th>
<th>Quality of Treated Water</th>
<th>Method of Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BOD₅) mg/l</td>
<td><10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>suspended solids (TSS) mg/l</td>
<td>24</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>FC (Colony/100ml)</td>
<td>80</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>(COD) mg/l</td>
<td>20</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Dissolved Oxygen (DO) mg/l</td>
<td>7.1</td>
<td>>1</td>
<td>>1</td>
</tr>
<tr>
<td>dissolved Solids (TDS) mg/l</td>
<td>696</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>pH</td>
<td>7.17</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Fat, Oil, & Grease mg/l</td>
<td><1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Phenol mg/l</td>
<td><0.001</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>MBAS</td>
<td><0.01</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>NO3-N mg/l</td>
<td>26.26</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>NH4-N mg/l</td>
<td>0.08</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total Nitrogen mg/l</td>
<td>26</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>CL mg/l</td>
<td>176.65</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>SO4 mg/l</td>
<td>70.22</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Na mg/l</td>
<td>151.2</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Mg mg/l</td>
<td>16.96</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Ca mg/l</td>
<td>86.77</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>SAR</td>
<td>3.87</td>
<td>5.85</td>
<td>5.85</td>
</tr>
<tr>
<td>PO4-P mg/l</td>
<td>2.59</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Al mg/l</td>
<td>0.054</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cu mg/l</td>
<td>0.013</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Fe mg/l</td>
<td>0.036</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mn mg/l</td>
<td>0.009</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ni mg/l</td>
<td>Absent</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Pb mg/l</td>
<td>Absent</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Se mg/l</td>
<td>Absent</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Cd mg/l</td>
<td>Absent</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Zn mg/l</td>
<td>0.083</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cn mg/l</td>
<td>Absent</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Cr mg/l</td>
<td>Absent</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Hg mg/l</td>
<td>1.3*10⁻⁴</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Co mg/l</td>
<td>Absent</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>B mg/l</td>
<td>Absent</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>E. coli (Colony/100ml)</td>
<td>23</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Nematodes (eggs/L)</td>
<td>Absent</td>
<td>1>=</td>
<td>1>=</td>
</tr>
</tbody>
</table>
Annex 8: Third party sludge analysis

<table>
<thead>
<tr>
<th>Elements</th>
<th>PS/-898:2010</th>
<th>Obligatory</th>
<th>Nablus West/sluudge</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st class</td>
<td>2nd class</td>
<td>3rd class</td>
<td>Tech. Ins 59/2015</td>
</tr>
<tr>
<td>Cd (ppm)</td>
<td>40</td>
<td>40</td>
<td>85</td>
<td>20</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>1500</td>
<td>3000</td>
<td>4300</td>
<td>1000</td>
</tr>
<tr>
<td>Ni (ppm)</td>
<td>300</td>
<td>400</td>
<td>420</td>
<td>300</td>
</tr>
<tr>
<td>Pb (ppm)</td>
<td>300</td>
<td>840</td>
<td>840</td>
<td>750</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>2800</td>
<td>4000</td>
<td>7500</td>
<td>2500</td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td>900</td>
<td>900</td>
<td>3000</td>
<td>400</td>
</tr>
<tr>
<td>Hg (ppm)</td>
<td>17</td>
<td>57</td>
<td>57</td>
<td>16</td>
</tr>
<tr>
<td>PH</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Electrical Conductivity (µs/cm)</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Phosphorus total (ppm)</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>(TKN) ppm</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Density g/cm³</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Moisture %</td>
<td>10%</td>
<td>50%</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Dry matter %</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Organic matter %</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Helminthes eggs (egg/g)</td>
<td>1</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>FC (cfu/g)</td>
<td>1000</td>
<td>2000000</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>E.coli (cfu/g)</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>Salmonella (cu/g)</td>
<td>3</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
</tbody>
</table>